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Abstract. Robotics researchers have been unable to capitalize easily on existing

software components to speed up their development e�orts and maximize their

system's capabilities. A component-based approach for building the software for

robotics systems can provide reuse and sharing abilities to the research commu-

nity. The software engineering community has been studying reuse techniques for

three decades. We present several results from those e�orts that are applicable to
the robotics software integration problem. We describe how to specify a software

component so that a potential user may understand its capabilities and facilitate

its application to his or her system. At the National Institute of Standards and

Technology, we have developed a three-stage, component-speci�cation approach. We

illustrate this approach for a component that is relevant to robotics.

Keywords: software components, software reuse, frameworks, intelligent systems,
software architectures

1. Robotic research and software reuse: two parallel e�orts

Robotics research has long been at an impasse: unless appropriate

technologies emerge, ine�ective and ine�cient sharing of software will

continue to impede the goal of truly intelligent, robust, robotic system

behavior. This paper discusses the use of component speci�cations

to achieve sharing and integration of robotic software modules. We

begin by providing background on component speci�cation and reuse

activities in the general software engineering community. A brief dis-

cussion of some e�orts in the robotics domain that are relevant to

component-based development follows. Finally, an approach to compo-

nent speci�cations developed and applied at the National Institute of

Standards and Technology provides a concrete instance. Software reuse

{ using existing software artifacts during the construction of a new
system { has long been a goal of the software engineering community

(Nauer and B. Randel, 1968). Numerous e�orts have been underway in

academia and industry that address the challenges of creating software

components so that they are suitable for reuse. Research issues include

speci�cation, implementation, retrieval, and assembly of components.

The robotics research community may leverage certain aspects of these

e�orts in order to communicate their particular requirements and the

functionality of those components. A common understanding of the
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application domain, vocabulary, and architectures (Chen and Cheng,

1997) contributes to a concrete framework bene�ting reuse. Krueger

(1992) states that the few success stories in reuse occur in similar

environments having a common, domain-speci�c frame of reference.

Being able to leverage existing software components would reduce de-

velopment e�orts for researchers. Instead of having to write all of the

software for its robot testbed, a research team could concentrate on the

software that is unique to their area of interest. Furthermore, building
systems using proven \best of class" components developed elsewhere

should lead to more capable robotic implementations overall.

A main research area for software reuse has been component spec-

i�cation. Despite the progress made in this area, there are several

important obstacles to the application of these results and approaches

directly to the integration of robotic research: the bulk of the com-

mercial e�orts in speci�cations for reuse have been targeted towards

business software development, which addresses a di�erent set of re-

quirements than does development of real-time software that interacts

with and controls hardware components. Several of the current e�orts

rely on fairly constrained de�nitions of environments in which reuse is

possible. They assume that the reuse will occur within a particular de-

velopment environment (Kara, 1997). It is not realistic to assume that

robotics research institutions will abandon their current development
environments in favor of a standardized one, even if that would provide

reuse possibilities.

At the National Institute of Standards and Technology, we have

been developing the speci�cations of software components for intelligent

control, a domain that includes robotics. We de�ne intelligent control

as the capability for a complex system to successfully perform com-

plex physical tasks in the presence of uncertainty and unpredictability.

In considering the component-based approach to software design and

development, we initially found inspiration in the design paradigm

prevalent for certain hardware domains. In hardware design, a high-

level functional decomposition is generated, along with requirement

speci�cations for individual components. Designers use hardware cata-

logs to locate candidate components that match their speci�cations.

In certain hardware domains, such as printed circuit board design,
integrated design and simulation tools allow the designer to evaluate

the overall system performance using the candidate chips. Speci�ca-

tions that de�ne the characteristics and behavior of a chip exist in

languages such as the Very High Speed Integrated Circuits Hardware

Description Language (VHDL) (IEEE, 1994). Eventually, we expect to

see an analogous capability emerge for software, allowing designers to

locate available components that match their criteria and evaluate their
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performance through simulation that is derived from the speci�cation

itself. In the nearer term, we seek to enable software designers to browse

catalogs of available components that are described in a meaningful

way. Our approach is unique in that it takes a multi-stage view of

software component speci�cations. There are three potential levels of

speci�cation for a software component:

� a speci�cation template which de�nes the identi�es relevant as-

pects for a component

� speci�c, natural language text instantiations that �ll in the cate-

gories in the generic class

� formal versions of the speci�c instantiations

Much of the literature on component speci�cation and reuse is tar-

geted towards domain-speci�c algorithms that are not based on en-

gineering, scienti�c, or real-time applications. We were interested in

evaluating the issues in specifying components in those domains where

potential users of a component often want to compare their system

requirements with semantic characteristics of multiple competing com-
ponents. For example, a user may need to know whether an algo-

rithmwill not converge given certain input conditions. Furthermore, the

target-system's performance characteristics are often not fully known,

so that testing and simulation are especially critical in the context of

a prototype system.

We began our research by identifying a class of algorithms that

would lend themselves to reuse in industrial or research settings, devel-

oping speci�cations for that class of algorithms, and studying how to

represent the speci�cations so that they can be used in several ways.

To illustrate the general concepts about software components that are

presented, we include a description of our results thus far in generating

and validating component speci�cations for a class of control software

components.

2. Background and Relevant E�orts

2.1. Academic Work

There are many de�nitions of the term \component." When the inner

workings of a component are not open for inspection, it is generally

referred to as a black box component (Short, 1997 and Szyperski, 1998).

Conversely, a white box component's insides (typically source code) are

available for customization, extension, or other modi�cation. We shall
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use the term component to mean a unit of software with clearly de�ned

interface and functionality. This de�nition allows components to be

white box, but does not require it. The majority of component-based

software research is attempting to address the reuse challenge. In order

to facilitate successful reuse, an abstraction process must take place

that reduces the level of details that are unimportant to the system

developer (Krueger, 1992). The creation of meaningful summaries of

component behavior in the form of component speci�cations is just
such an abstraction process.

There are three main areas of characterization required to de�ne

a software component: its static aspects, its dynamic characteristics,

and its semantic content. Most descriptions of software components for

reuse de�ne the signature of a piece of software. The signature primarily

describes the static aspects of code, such as the call interface, data 
ows,

and operating system requirements. Several e�orts have been aimed at

detailing the dynamic aspects of a piece of software, that is, its run-

time characteristics. For example, the C++ Standard Template Library

includes execution time bounds in the speci�cation of functions (Musser

and Saini, 1996). Another approach using run-time information is based

on historical traces. Histories of permissible state transitions have been

used as part of a component's speci�cations (Liskov and Wing, 1993).

Capturing the semantic aspects, i.e., the real meaning and function of a
piece of software, poses the most challenges. A semantic description of a

component is a form of information abstraction. Krueger (1992) refers

to the process of abstraction as an attempt to reduce the cognitive

distance, which he de�nes as \the amount of intellectual e�ort that

must be expended by software developers in order to take a software

system from one stage of development to another." Therefore, the chal-

lenge is not only to capture the semantics of a component, but also to

do so at an appropriate level or levels of abstraction. Carefully chosen

and appropriately utilized component speci�cations can meet such a

challenge.

Several component speci�cation approaches attempt to create a lan-

guage or taxonomy for describing components such that they can be

matched with descriptions of required functionality or features. Zarem-

ski and Wing (1996) de�ne speci�cation matching as the \process of de-
termining if two software components are related." Speci�cation match-

ing can facilitate retrieval based on syntax and semantics, adaptation

for reuse, and substitution of one component for another. Kazman

et al. (1997) describe the use of architectural elements for classi�cation

matching. They categorize the run-time characteristics (such as, times

of control acceptance, times of data acceptance, and state retention)

and the static features (such as, whether the data and control scopes are
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virtual or physical and whether the component binds at invocation or

execution) of a component and match those against speci�ed criteria.

The full semantic description of a component can be challenging to

produce, especially if trying to understand a piece of software written

by someone else. This has led to attempts to extract component spec-

i�cations from code automatically or semi-automatically. Approaches

vary widely. For example, Basili and Abd-El-Ha�z (1992) describe the

Computer Aided Reuse Engineering Functional Speci�cation Quali�er,
which is a knowledge based approach that �nds the abstract speci�ca-

tions of a program's loops and produces speci�cations in a �rst order

predicate language. Podgurski and Pierce (1993) retrieve software com-

ponents by modeling the inputs and desired outputs and statistically

exercising a set of candidates with random inputs to �nd the ones whose

outputs most closely match the desired ones.

Component speci�cations may, in some cases, be more readily de-

rived by taking a domain-speci�c approach (Batory and O'Malley,

1992; Demeyer et al., 1997; Nierstrasz et al., 1992; Nierstrasz and

Meijler, 1995). The universe of possible options and the problems ad-

dressed is bounded within domain-speci�c approaches. Domain-speci�c

component reuse is related to framework reuse. A framework is a col-

lection of components with de�ned relationships between them (Pree,

1997). Frameworks may be designed to have designated components
that are replaceable or customizable. Some of the literature refers to

these designated variable components as hot spots (Pree, 1997) or axes

of variability (Demeyer et al., 1997).

We brie
y describe some examples that are especially relevant to

robotics researchers. The Recon�gurable Modular Manipulator System

(RMMS) (Paredis et al., 1997; Stewart et al., 1997) at Carnegie Mellon

University provides an environment that supports assembly of robotic

manipulators through the use of hardware and software building blocks.

The system is a framework of port-based objects (PBOs) built upon

a custom real-time operating system. PBOs are based on the port-

automaton theory (Steenstrup et al., 1983). The PBOs are independent

processes that communicate with other PBOs via input and output

ports. They interact with sensors and actuators via resource ports.

Con�guration constants are used to tailor generic components for spe-
ci�c hardware or applications. PBOs are not de�ned semantically in a

formal manner. A text con�guration �le describes a port-based object.

The con�guration �le contains the module name, its natural language

description, names of input and output variables (ports), input and out-

put con�guration constants, whether the task is periodic or aperiodic,

and process execution frequency. Module-speci�c local con�guration

parameters, such as gains, may also be included in the con�guration
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�le. Selecting PBOs and connecting their corresponding inputs and

outputs con�gures a system. A graphical tool is available to support

software composition using PBOs. There does not appear to be a means

of retrieving components matching particular speci�cations.

Another example from the robotics domain is the Interactive Bench-

mark for Planning Algorithms on the Web (Piccinocchi et al., 1997).

This web-based environment provides users the ability to compare path

planning algorithms for car-like vehicles. Using a client-server model,
users can exercise several planning algorithms already implemented

within the environment by either using available problem sets, or de�n-

ing their own. A problem is posed by selecting one of �ve vehicles,

de�ning polygonal obstacles and start and goal positions for the vehicle.

The solution is presented graphically as the path found, along with

data such as path length and execution time. Users can connect their

own planners to the environment. This aspect requires a component

speci�cation for the planner algorithm. The overall environment can

be considered a domain-speci�c framework providing an infrastructure

(HTML (Berners-Lee and Connolly, 1993), CGI scripts (McCool, 1994),

and TCP/IP (Postel, Editor, 1981)) for one variable component. Be-

cause the environment is tailored for a very restricted domain, the

speci�cation for the planner component describes simple text data

input and output �les. The input �le lists the number of obstacles
and a sequence of vertices for each obstacle. The output �le contains

a path de�ned by a sequence of linear, circular, or elliptical segments.

There is no explicit semantic representation used in this testbed and

no performance data are included.

2.2. Specifications in Industry

Commercial e�orts have become much more visible and viable in the

past few years. In the book by Szyperski (1998), the focus is on reusable

assets and typically referring to blackbox reuse. His de�nition of compo-

nents is \binary units of independent production, acquisition, and de-

ployment that interact to form a functioning system." Most of the lead-

ing e�orts, such as Microsoft (COM, OLE, ActiveX, COM+)
(Brockschmidt, 1995; Chappell, 1996; Denning, 1997), Sun Microsys-

tems (Java, Java Beans) (JavaSoft, 1998), and Object Management

Group (OMA, CORBA) (OMG, 1996; OMG, 1997), are at the \wiring"

level. They concentrate on the communication infrastructure and gluing

together of components (Pree, 1997; Szyperski, 1998).

Component speci�cations are of increasing importance to the man-

ufacturing industry as it is in the midst of a major shift in technology

from closed, proprietary systems to the era of open, plug-and-play
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systems. The leading plug-and-play standardization e�orts, all de�ne

an open-architecture and component interface speci�cation, but dif-

fer in their approaches. The Open System Environment for Controller

(OSEC) working group, founded by six Japanese companies, de�nes the

Factory Automation Equipment Description Language (FADL) based

on the PERL object-oriented programming language (SML Corpora-

tion, 1998). With a more powerful programming language like FADL,

reusability would result from standardized libraries available for com-
mon applications. The Open System Architecture for Controls within

Automation Systems (OSACA) started as a joint European project

in May 1992 but has broadened the scope to de�ne a world-wide,

vendor-neutral system architecture containing a communication speci-

�cation, a reference architecture and a con�guration speci�cation (OS-

ACA, 1998). Reusability is based on conformance to the reference

architecture, which describes external interfaces for a set of standard

modules. The Open Modular Architecture Controller (OMAC) (Bailo

et al., 1994) Application Programming Interface (API) (OMAC API

Workgroup, 1997) workgroup has developed an object-oriented frame-

work that includes a control class hierarchy, plug-and-play modules

aggregated from the class hierarchy, and a model of collaboration.

Reusability is based on the framework model (Fayad and Schmidt,

1997).

3. Software Speci�cations for Intelligent Control

Components

We have been researching methods to design software component speci-

�cations that are standardizable and comprehensive and would provide

the basis for component repositories usable for intelligent control. Our

research seeks to improve the e�ciency of communicating a new al-

gorithm's capabilities and characteristics, so that potential users can

evaluate it. We use the terms algorithm and component interchangeably

in this section since the focus of our work is to facilitate distribution

and leveraging of algorithms, not necessarily the comparison of di�erent
implementations of the same algorithm. Since the information is crucial

to the design of a system, some of the speci�cation categories do require

data about the algorithm as implemented in a component.

The research described herein targets a particular set of aspects per-

tinent to component speci�cations. The domain is focused on intelligent

control. The scope of the speci�cation categories goes beyond just the

\wiring" and signature aspects of a component. We include semantics

and certain implementation characteristics so as to allow system de-
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velopers to e�ectively communicate and comprehend a component's

capabilities and applicability to their system. We are investigating

methods to use speci�cations in design and simulation tools during

the system design process.

Taking a domain-speci�c approach to component analysis, we tar-

geted a particular family of algorithms relevant to intelligent control,

namely pose estimation. This enabled us to extract the signi�cant se-

mantic information without having to be exceedingly broad. We have
taken a three-part approach to component speci�cation. Initially,

generic speci�cation categories to be �lled in for each algorithm are

de�ned. The generic categories are a template to be used to de�ne

the operation and performance of a particular component in the class.

Secondly, for a particular algorithm or component, the developer �lls in

each slot in the template. This creates the particular, instantiated spec-

i�cation in a natural language format. The �nal step in speci�cation

is to convert the natural language descriptions into a formal language.

The multi-stage development of speci�cations within a domain-speci�c

context provides a robust approach to component de�nition.

There are several advantages to considering the formal representa-

tion of an algorithm. Formal languages provide an unambiguous spec-

i�cation of information about the component. They also hold the po-

tential for supporting simulation of the component's execution to verify
how it will �t into the overall system being assembled. Ultimately, if

automated component retrieval, matching, and composition is desired,

some form of formal language will be required. Formal methods have

not been widely deployed outside of specialized areas due to the lack of

familiarity with the notations and the di�culties of using them (Baresi

et al., 1997). Nevertheless, we believe that their advantages outweigh

the challenges of adopting them. Furthermore, we anticipate that, in

the long run, tools will be able to extract the formal expressions, trans-

late between representations, and utilize them without exposing the

developers or users of the components to the formal representations.

The algorithm class that we have focussed our research on performs

position and orientation estimation for a physical object using visual

sensing (also referred to as \part pose estimation"). This is a class for

which several algorithms have been published, enabling us to examine
the breadth of speci�cation categories applicable to these components.

This class provides a su�ciently rich problem set, involving several as-

pects that are relevant to developers of controllers for robotics and other

advanced automation applications. Key elements include sensory in-

puts, mathematical computation, access to an external database (such

as a Computer-Aided Design model of the part), spatial reasoning, and

a range of algorithm options, such as pose matching two-dimensional
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information against two-dimensional or three-dimensional data. Avail-

able resources in-house enabled us to validate the speci�cations through

implementations.

We validated the speci�cations for a component within an inspection

system that was implemented based on the NIST Real-Time Control

System (RCS) architecture (Albus, 1996; Albus, 1997). The RCS ar-

chitecture has been used in development of several robotic applications

(See Herman and Albus, 1988; Murphy et al., 1993; Murphy et al., 1988;
and Stou�er and Russell, 1995 as examples). Although the particular

testbed for which the part pose estimation component was developed

is not strictly speaking a robotic one, the problem being solved is very

compatible with the type encountered by robot developers. Essentially,

the system has to extract information about its environment through

the use of sensors and update an internal model of the world using a pri-

ori knowledge in order to generate a plan of action that re
ects its goals

and the state of the environment. The images captured from the cam-

eras inform the system about its environment. The system has a goal to

inspect a part's dimensions. Dimensional inspection involves measuring

the relative geometry of surface features and determining whether they

are within tolerance. Examples of feature geometry evaluated include

shapes of smooth surfaces, distances between edges, positions of holes,

and diameters and shapes of holes. The system has a priori knowledge
or expectations about the datum geometry of the part and its location.

Comparing the expected world model with the sensed world model,

the system alters its inspection plan based on the actual position of

the part.

The inspection system testbed provides an RCS-based framework

with the part pose estimation subsystem designated as a hot spot.

From a framework perspective (Huang, 1996), RCS prescribes a multi-

dimensional decomposition of a system, built upon generic controller

nodes. The nodes are assigned speci�c responsibilities at di�erent levels

of abstraction determined by their functionality in one axis, and their

response time in another. The varying levels of abstraction help reduce

the cognitive distance for engineers during the design process. This

allows them to focus on one level of abstraction at a time and on

the relevant variables and parameters for that level only. Communica-
tion pathways and component responsibilities within the hierarchy and

between nodes are de�ned within the RCS framework. All controller

nodes contain behavior generation (BG), sensory perception (SP), value

judgement (VJ), and modeling (WM) functionality. The part pose

estimation component corresponds to sensory processing and world

modeling functions within the Vision node in the simpli�ed hierarchy

diagram in Figure 1.
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Inspection Workcell

Inspection Workstation

Fixturing Measurement Vision
(recognition, localization)

Probe Changing Coordinate
 Measuring Machine

Probe CMM
Axes

Figure 1. RCS Hierarchy for an Inspection Testbed

3.1. Step 1: Generic categories for the specifications

The generic categories for component semantics that were de�ned can

be thought of as a set of questions that a potential user of the compo-

nent may ask its developer in order to ascertain whether the component

is appropriate for use in a new system. The questions should address

the static, dynamic, and semantic aspects of the software component.

The categories that were selected to describe the part pose estimation

component are listed below.

Problem de�nition What problem is this component intended to

solve? What are the potential and known application areas for

messina.tex; 31/12/1998; 8:42; p.10



11

this component? For each application area, give a set of competing

components with references.

Input data What is the input data to the component? What input

data sets were used in the testing? What are the dimensional units

of the input data? What is the format of the input data? Are
the representations chosen for the input data consistent with the

expected or typical upstream components? What are the input pa-

rameters required (if any) and how do they a�ect the operation and

performance of the component? Input parameters are the design

values (typically static) that a�ect the operation of the algorithm,

whereas input data values are the input from the world, e.g., a

sensor, that are to be transformed in some way. Are there any

input parameters that allow the user to specify the type and/or

format of the output?

Output data: What are the outputs of the component? What is the
format of the output data? How are the various formats for the

output data speci�ed? For instance, if the output data is con-

tained in �les, what are the �le formats? Are the representations

chosen for the output data consistent with the expected or typical

downstream components?

Transfer and feedback relations How do the inputs relate to the

outputs, i.e, what are the transfer and the feedback relations? If

one can describe these relations analytically, describe these equa-

tions, e.g., are they linear or non-linear, and state these equa-

tions, e.g., de�ne meanings of variables and write out all rela-
tions. Under what conditions are the equations over-determined

or under-determined?

Input data constraints What are the constraints on the format and

nature of the input? There may be constraints on the nature of the

input beyond what is inherent in the nature of the component. For

example, the number of elements in an array might be constrained

to be even, or the di�erence between input numbers might be

constrained to be greater than some value, or the number of input

values might be constrained to be in some range.

Environmental constraints `Environment' means factors external

to the computing system and its data which a�ect the performance

of the component. If the task of the component is to examine or ma-

nipulate physical objects, what are the constraints on the format

and nature of those objects? For instance, what are the rigidity,

size, shape, color, surface �nish, or illumination conditions? If there
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is a sensing device, what are the constraints on the type and use

of the sensing (e.g., structured light, CCD camera, range camera)?

Does the object need to be placed in some approximate pose? Are

there special con�gurations of the environment that might cause

the component to fail?

Knowledge data constraints What are the constraints on the for-

mat and nature of the knowledge data? For example, can a CAD

drawing in some standard format be used for matching sensed

features to model features?

Computing constraint What, if any, are the operating system re-

quirements of the component? In what computer language is the
source code written? Is the source code available? Are there any

system architecture requirements for using the component? What

kind of computing hardware is required by the component? How

much RAM memory and disk space is needed? Are there any

constraints on the numerical precision of the processing system?

Internal data representation If there is some knowledge (i.e., not

input/output data) that is explicitly represented within the com-

ponent, what is the format of the representation?

Speed Based on actual examples run on speci�c computers, how fast

does the component run? What is the execution time of each of

the subcomponents of the component? If speed depends on the

size or type of input data, give the speed of execution for a �xed

and standard size or type of input.

Complexity What are the relations de�ning computational complex-

ity of the component (there may be more than one such relation)

as functions of the input variables? Complexity relates closely to

speed. But an analysis of complexity typically does not deal with

the initial �xed cost of the component or with the size of the
constants by which various terms of the complexity must be mul-

tiplied. What assumptions are made in the complexity analysis?

Benchmarks If there is a standard test suite (a set of benchmarks) for

components performing the same task, what are the benchmarks

and how does the component perform against them? Are there

optimal components that can produce the ideal output? How is

optimality de�ned for each component? Are there other measures

of performance, e.g., statistical measures? If so, how does the

component perform based on these measures?

messina.tex; 31/12/1998; 8:42; p.12



13

Robustness How robust is the component, i.e., how does the compo-

nent perform in the presence of large perturbations on a subset

of its data values? Such perturbations have been called replace-

ment noise, e.g., when object recognition is the task and feature

recognition is a subtask and a feature of Type A is thought to be

of Type B by the algorithm. Replacement noise is usually large

on a small subset of the data and probabilistic noise is small on

a large subset of the data. How does the component perform as
replacement noise varies throughout its range, e.g., does perfor-

mance degrade smoothly or catastrophically? Several aspects of

this type of noise can vary, for instance, the size and type of the

perturbations and the size of the subset of all data values a�ected.

Is the component able to perform well (or at all) if the input

is outside of the speci�ed region? State all models that exist for

replacement noise. For instance, what is the model for the `ideal'

world? What is the model for large perturbations (e.g., mismatch)

on this ideal world? What is the criterion function for measuring

the di�erence between noisy output and ideal output (Haralick and

et al, 1989)?

Noise How does the component perform in the presence of small per-

turbations, i.e., probabilistic noise, on all data values? How does

the component perform as this type of noise varies throughout

its range, e.g., does performance degrade smoothly or catastroph-

ically? Several aspects of this type of noise can vary. For instance,

both the size and type of the perturbations can vary. State all
models that exist for this type of noise. For instance, what is the

model for the `ideal' world, what is the model for small pertur-

bations on this ideal world, and what is the criterion function for

measuring the di�erence between noisy output and ideal output

(Haralick and et al, 1989)?

Convergence Is the component iterative or closed form? If iterative,

under what (if any) conditions is convergence guaranteed? Does

the component converge to the global solution?

Errors What is the error criterion, e.g., least squares? What kinds

of input errors and/or internal errors does the component de-

tect? What does it do if such errors are detected? Are there error

recovery procedures?

Reliability If the algorithm is available as source code, a library, or

embedded in a system, how reliable is it? How reliable is the com-

ponent? Are there any known bugs? What reliability tests has the
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component passed, such as the checking provided by commercially

available reliability tools, or a theoretical correctness proof? Exam-

ple entities checked by such tools are uninitialized local variables,

uninitialized malloc'd memory, using freed memory, overwriting

array bounds, over-reading array bounds, memory leaks, �le de-

scriptor leaks, stack over
ow errors, and stack frame boundary

errors. Has there been testing by some sort of coverage test tool,

which keeps track of which code is executed in a given session?
Coverage tools give a sense of how much of the code was exercised

by other reliability tests. The granularity can be at the function,

block, or line level. A coverage tool will give the potential user

greater con�dence in a software component's reliability if it had

been covered 100% during testing and errors were cleaned out of

it.

Testing and analysis What experiments have been done with the

component? If input data was varied over a set of variables, what

criteria were chosen to sample the space of variables in order to

generate sample input data? Was Monte Carlo testing done? Are

there simulators available that generate input data? What kinds

of analysis have been done on the results? What kinds of graphs

and tables have been produced and what is their format? What

statistical methods have been used?

Application Experience How widely has the algorithm or compo-

nent been used? What is the reported experience? What are the

potential application areas for this algorithm and, for each appli-

cation area, give a set of competing algorithms with references?

Upstream and downstream requirements What kinds of compo-

nents or algorithms are typically executed prior to or subsequent

to this algorithm? Are the representations chosen for the input

and output data consistent with the expected or typical upstream

and downstream components? Does anything in the component

constrain the upstream or downstream components that must be

used? The types of upstream and downstream components may

depend on the particular area to which the component is applied.

Parallelizability Can the component be parallelized? Has it been?

How does parallelizing a�ect performance?

Modularizability Can subcomponents of the component be modu-

larized? Have they been? How might modularization a�ect com-

ponent performance?
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Nature of interaction How is the component used? Can it be used

by function call, or is the component part of a system that runs in

client-server mode, or some other more complicated mode?

Coding style How is the code written, e.g., in functional, procedural,

recursive, or object-oriented style?

Compliance to standards Which (if any) standards (published or

de facto) are used and complied with?

3.2. Step 2: Natural Language Instantiation of the

Specification

Given a template to �ll in for a particular algorithm class, the developer

can �ll out all the slots with available information. It is possible that

not all of the data will be known or be applicable. The natural language

description of the algorithm, generated using the generic template as

a guide, can be used directly to communicate a component's capa-

bilities, limitations, and requirements. If component natural language

descriptions are made publicly available in text or other format, readily
available tools can be applied to locate and assess the components. A

search engine can be used to locate candidate components based on cer-

tain keywords. Potential users can also browse through the descriptions

as they would through a hardware components catalog.

The above component template was �lled in for published algorithms

as well as for an in-house developed algorithm. We include the in-

stantiation for a part pose algorithm (Tan et al., 1992, 1994, 1996)

to illustrate what the natural language speci�cations look like. The

algorithm computes an estimate of the position and orientation (pose)

of any object where the inputs to the algorithm are the matched model

and sensed feature pairs. The algorithm consists of non-iterative, closed

form expressions, which is rare for 3D pose estimation algorithms. This

is accomplished by assuming that the ground plane on which the object

lies is known, which is a common assumption for many applications.

Problem De�nition What problem is this component intended to solve?

This component computes the location and orientation of a lami-

nar part. What are the potential application areas for this algorithm

and, for each application area, give a set of competing algorithms

with references? Pose estimation of automobiles on roads of known

orientation and rigid objects on 
at surfaces of known orientation.

Some competing algorithms are (Dementhon and Davis, 1995),

(Haralick, 1992) and (Huttenlocher and Ullman, 1990).
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Input Data What is the input data to the algorithm? An array of N

vectors of the following nine real numbers (doubles) for each i =

1, 2, . . . , N, (ai; bi; ci; x
0

i ; y
0

i ; z
0

i ; �i; �i; 
i), where N is the num-

ber of lines in the image that corresponds to lines in the model,

(ai; bi; ci) is the unit vector of parameters that solves the equa-

tion, aiu + biv + ci = 0 for all on the ith measured line in the

image, (x0i ; y
0

i ; z
0

i ) is the position vector of the initial point of

the corresponding model line segment in model coordinates, and
(�i; �i; 
i) is the unit directional vector of the same model line

segment also in the model coordinates. Also required for input are

the parameters for perspective transformation (tx; ty; tz; �; "; �; f),

where (tx; ty; tz), is the vector of translation from the origin of

the machine coordinate system to the center of the camera lens,

(�; "; �) is the vector specifying the roll, pitch, and yaw of the

camera in radians (yaw is a counter-clockwise spin around the z-

axis, pitch is a counter-clockwise spin around the x-axis, and roll is

a counter-clockwise spin around the y-axis), and f is the camera

focal length. What input data sets were used in the testing? Tan

has models of automobiles. The authors have a slightly modi�ed

cube for testing which is de�ned in Mathematica. What are the

dimensional units of the input data? (ai; bi; ci) are dimensionless,

(x0i ; y
0

i ; z
0

i ) are in meters, and (�i; �i; 
i) are in radians. (tx; ty; tz)
are in meters, (�; "; �) are in radians, and f is in meters.

What is the format of the input data? All input arrays are arrays of

doubles. Are the representations chosen for the input data consistent
with the expected or typical upstream algorithms? The expected

upstream algorithm is an algorithm matching a sensed feature

to a model feature and, since the Tan algorithm requires input

lines to match edges on a planar polygonal object, the matching

algorithm must produce line matches as well. However, if point or

line segment matches are all that are available from the matching

algorithm, line parameters can easily be generated from them.

What are the input parameters required (if any) and what meaning

do they have for the operation and performance of the algorithm?

None required. Are there any input parameters that allow the user

to specify the type and/or format of the output? No.

Output Data What are the outputs of the algorithm and what is the for-

mat of the data?An array of four doubles, (x; y; �; k), where (x; y; �)

represent the two dimensional position and orientation of the part

and k represents the scale of the part (in case the part measured

is a scaled version of the model). The remaining three parameters,

(z; �;	), required to fully specify the three dimensional position

messina.tex; 31/12/1998; 8:42; p.16



17

and orientation, are assumed to be known and equal to zero a

priori. How are the various formats for the output data speci�ed, for

instance, if the output data is contained in �les, what are the �le

formats? An ANSI C-compliant array.

What is the format of the output data? All output arrays are ar-

rays of doubles. Are the representations chosen for the output data

consistent with the expected or typical downstream algorithms? Yes.

Transfer and Feedback Relations How do the inputs relate to the

outputs, i.e, what are the transfer and the feedback relations? If we

can describe these relations analytically, describe these equations, e.g.,

are they linear or non-linear. State these equations, e.g., de�ne mean-
ings of variables and write out all relations. This algorithm is open

loop. The transfer relationship is non-linear. Form the following

matrix, Mvl, using the input data, (tx; ty; tz; �; "; �; f),

MwI = (PTlR";�TL)
T where TL =

2
664
1 0 0 �tx
0 1 0 �ty
0 0 1 �tz
0 0 0 1

3
775 ;

and

R"� =

2
664

cos� sin� 0 0

�cos"sin� cos"sin� sin" 0
sin"cos� �sin"cos� cos" 0

0 0 0 1

3
775

TI =

2
664
1 0 0 0

0 1 0 �f

0 0 1 0

0 0 0 1

3
775 and P =

2
664
1 0 0 0

0 1 0 0

0 0 1 0

0 1

f
0 1

3
775

De�ne vectors, ri = (mi1;mi2;mi3;mi4), i = 1, 2, 3, 4, where mij

is the element at the ith row and jth column of MwI . Using the

input values, (ai; bi; ci; x
0

i ; y
0

i ; z
0

i ; �i; �i; 
i) for each i = 1, 2, . . . , N,

form the following scalar coe�cients for each of the N matching

lines
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A = (x0r1 + y0r2) � n

B = (x0r2 + y0r1) � n

C = r1 � n

D = r2 � n

E = z0r3 � n

F = (�r1 + �r2) � n

G = (�r2 � �r1) � n

H = 
r3 � n

J = �r4 � n

Using these coe�cients, form the following matrices,

A =

2
4 F1 : : : FN A1 � � �AN

G1 : : : GN B1 : : : BN

3
5
T

(1)

B =

2
4 0 : : : 0 C1 � � �CN

0 : : : 0 D1 � � �DN

0 : : : 0 �J1 � � � � JN

3
5
T

(2)

A =
�
H1 : : : HN �E1 � � � �EN

�T
(3)

Our desired output is (x; y; �; k), so de�ne

k0 =
1

k
; x0 = k0x; and y0 = k0y (4)

and de�ne

q1 = (cos�; sin�) and q2 = (x0; y0; k0) (5)

De�ne the following matrices

D = ATA�ATB(BTB)�1BTA =

�
a1 a2
a3 a4

�
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h = ATC�ATB(BTB)�1BTC =

�
h1
h2

�

De�ne the following constants

c3 = 2(a1 + a4)

c2 = (a1 + a4)
2 + 2(a1a4 � a2a3)� (h2

1
� h2

2
)

c1 = c3(a1a4 � a2a3) + 2h1h2(a2 + a3)� 2(a1h
2

1
� a4h

2

2
)

c0 = (a1a4 � a2a3)
2 � (h1a4 � h2a2)

2 � (h2a1 � h1a4)
2

Solve the following equation using these constants,

�4 + c3�
3 + c2�

2 + c1�+ c0 = 0 (6)

and for each real solution, �, �nd q1 and q2 that solve the following

two equations:

q2 = (BTB)�1BTC� (BTB)�1BTAq1

(D+ �I2)q2 = h

The optimal q1;q2 is taken as the pair that minimizes



 Aq1 +Bq2 �C


2 (7)

Under what conditions are the equations over-determined or under-
determined? Since a non-linear, least squares technique is used,

equations should typically be overdetermined. In order for the

equations not to be under-determined, there must be 3 or more

non-degenerate line matches, i.e., N � 3. A line match is degener-

ate if 1)(�i; �i) = (0; 0) (i.e., the model line of a match is vertical

to the ground plane), 2) for i 6= j, (�i; �i; 
i) = (�j ; �j ; 
j) (i.e.,

the model lines are parallel)and (ai; bi; ci) = (aj ; bj ; cj) (the image

lines are collinear), or 3) if there is a single unique solution to the

equation,

p0i + t(�i; �i; 
i) = p0j + t(�j; �j ; 
j)

for i 6= j and p0i = t(x0i ; y
0

i ; z
0

i ) (i.e., the model lines intersect),

and (ai; bi; ci) = (aj ; bj; cj) (i.e., the image lines are collinear).
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How do the output values vary with respect to the input, e.g., if

it is non-linear, describe the nature of the non-linearity? The pose

estimation depends on the solution of a fourth order polynomial

with at least four real solutions. If there is increasing input noise

and if the correct solution of the four suddenly no longer produces

the minimum, the solution will switch to another set of the four

which may, in turn, cause the output pose estimation to change

suddenly in value.

Input Data Constraints What are the constraints on the format and

nature of the input? There must be three or more non-degenerate

line matches, i.e., N > 2 (the degenerate case is already de�ned
above).

Environmental Constraints What are the constraints on the format
and nature of the environment? 1) The lighting must be good enough

to avoid excess specular re
ection and shadows, since the algorithm

is not explicitly designed to handle replacement errors, i.e., out-

liers. 2) Camera calibration must have been performed a priori. 3)

There must be no roll in the camera. If there is a sensing device,

what are the constraints on the type and use of the sensing (e.g.,

structured light, CCD camera, range camera)? CCD camera placed

with the object fully within the �eld of view.

Knowledge Data Constraints What are the constraints on the for-

mat and nature of the knowledge data? 1) The pitch, roll, and

z-position of the part coordinate system must be identically zero

in the machine coordinate system. This is the ground plane as-

sumption. 2) Model features for matching must be linear and,

furthermore, must correspond to sensed features perceivable by

standard edge detection algorithms. This constrains the model to

be planar polygonal.

Computing Constraints What (if any) are the operating system re-

quirements of the algorithm? Mathematica runs on UNIX, MacOS,

Windows, Windows 95, MS DOS, Windows NT. What computer
language is the source code written in?Mathematicatm. Is the source

code available? No (for research only). Are there any system ar-

chitecture requirements for using the algorithm? No. What kind of

computing hardware is required by the algorithm? Any hardware

running UNIX, Macintosh, IBM-PC-compatibles. How much RAM

memory and disc space is needed? About 8 megabytes RAM for Mac

or PC. File size is about 2 megabytes. Are there any constraints on

the numerical precision of the processing system? The computing
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system must allow computation that is precise to at least 24 deci-

mal digits. This unusually high precision is due to the sensitivity

of the fourth order polynomial, (Equation 6). For a certain data

set, in the presence of little or no noise, the correct solution to

Equation 6 has been found to be on the order of 10�21, which

would be detected as e�ectively zero on computing systems with

less precision.

Internal Data Representation If there is some knowledge internal to

the algorithm (i.e., not input/output data) to be represented, what is

the format of the representation? The object is represented in terms

of the parameters for lines (not line segments) for each of the edges

on the planar polygonal part.

Speed How fast does the algorithm run, based on actual examples run

on speci�c computers? Not measured at this time.

Complexity What are the relations de�ning computational complexity of

the algorithm (there may be more than one such relation) as functions

of the input variables? With N equal to the number of input line

matches, the algorithm complexity is roughly 335 + 153N time

intervals. What assumptions were made in this complexity analysis?

We assume that square roots, divides, adds, and multiplies are

roughly equivalent in time complexity. These times can be signi�-

cantly dependent on the type of computing architecture employed.
Decision steps were counted as 10 time intervals and there were two

of them: 1) determining which of the four solutions to the quartic

(Equation 6) are real and 2) determining the optimal (q
1
;q2) that

minimizes (Equation 7).

Benchmarks If there is a standard test suite (a set of benchmarks) for

algorithms performing the same type of tasks, what is that benchmark

and how does the algorithm perform against standard test suite? No.

Are there optimal algorithms that can produce the ideal output? No.

How is optimality de�ned for each optimal algorithm? N/A.

Robustness How does the algorithm perform in the presence of large per-

turbations (replacement noise) on a subset of its data values? It is not

designed to perform successfully with replacement noise nor has it

been tested under such noise. How does the algorithm perform as

replacement noise varies throughout its range, e.g., does performance

degrade smoothly or catastrophically? N/A. Is the algorithm able to

perform well (or at all) if the input is outside of the speci�ed region?

N/A. State all models that exist for replacement noise. None
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Noise How does the algorithm perform in the presence of small per-

turbations on all data values? Experimentation has been done in

the presence of noise on synthetic model data, a cuboid of size

3m � 2m � 1:2m. The synthetic object was placed about 22m

from the center of the camera. The image size was (512 � 512)

pixels. Small perturbations in translation were introduced to each

ideal image line segment along its normal direction. Small per-

turbations in orientation were introduced by rotating each ideal
image line segment with respect to its midpoint. The magnitudes

of the perturbations, t and !, of the translation and rotation, re-

spectively, were assumed to be uniformly distributed over [�T; T ]

pixels and [�
;
]. Monte Carlo simulations were conducted to

discover the propagation of error. Tables I and II report these

results. Uncertainty in these error measurements is not available.

Table I. Propagation of error: image feature translation error versus pose and scale

error (direction error �xed at three degrees, number of line matches �xed at ten)

number of pixels

translation error 2 4 6 8 10 12 14 16

pose error

(x only) in meters 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64

pose error

(y only) in meters 0.04 0.09 0.14 0.19 0.24 0.29 0.34 0.39

pose error

(only) in deg 0.5 0.54 0.58 0.62 0.66 0.7 0.74 0.78

scale error 0.03 0.045 0.06 0.075 0.09 0.105 0.13 0.145

How does the algorithm perform as this type of noise varies throughout

its range, e.g., does performance degrade smoothly or catastrophi-

cally? The degradation is roughly linear for the error in all dimen-

sions as can be seen from Tables I and II. State all models that

exist for this type of noise. At each error level, 200 Monte Carlo

simulations were done, absolute error between the ideal value of

the parameter and the noisy output value was computed, and all

200 error values were averaged.

Convergence Is the algorithm iterative or closed form? Closed form. If

iterative, under what (if any) conditions is convergence guaranteed?
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Table II. Propagation of error: image feature direction error versus pose and scale

error (translation error �xed at three pixels, number of line matches �xed at ten)

number of degrees

direction error 2 4 6 8 10 12 14 16

pose error

(x only) in meters 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64

pose error

(y only) in meters 0.04 0.09 0.14 0.19 0.24 0.29 0.34 0.39

pose error

(only) in degrees 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2

scale error 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

N/A. If iterative, does the algorithm converge to the global solution?

N/A

Errors What is the error criterion, e.g., least squares? Using de�nitions

in (Equation 1), (Equation 2), (Equation 3), (Equation 4), and

(Equation 5), the task is to solve the overconstrained equation

Aq1 +Bq2 = C for (x; y; �; k). This is a non-linear least squares

problem. The least squares solution is found by minimizing the

squared residual


 Aq1 +Bq2 �C



2 subject to the trigonomet-

ric constraint kq1k
2 = 1. This is accomplished by introducing a

Lagrange multiplier, �, and minimizing the following function with

respect to q1, q1, and �,

"(q1;q2; �) = kAq1 +Bq2 �Ck
2 + �

�
kq1k

2
� 1

�
.

What input errors and/or internal errors does the algorithm detect?

None. What does it do if such errors are detected? N/A Are there

error recovery procedures? No.

Reliability If the algorithm is available as source code, a library, or em-

bedded in a system, how reliable is it? Not known. Are there known

bugs? No. What reliability tests has the algorithm passed? None. Has

there been testing by some sort of coverage tool, which keeps track

of which code is executed in a given session? No.

Testing and analysis What experiments have been done with the al-

gorithm? Experimentation has been done in the presence of noise
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on synthetic model data, a cuboid of size 3m � 2m � 1:2m. The

synthetic object was placed about 22m from the center of the

camera. Image size was (512 � 512) pixels. If input data is varied

over a set of variables, what criteria are chosen to sample the space of

variables in order to generate sample input data? Small perturbations

in translation and direction were introduced as described earlier.

Was Monte Carlo testing done? Monte Carlo simulations were con-

ducted to discover the propagation of error. Tables I and II report
these results. Are there simulators available to generate input data?

Yes, but only for the Mathematica code.

What kinds of analysis have been done on the results? Propagation

of error analysis using Monte Carlo simulations of small pertur-

bations on the sensed input lines. What kinds of graphs and tables

have been produced and what is their format? See Tables I and II.

What statistical methods have been used? Simple arithmetic mean

on all the errors as shown in Tables I and II.

Application Experience How widely has the algorithm been used?

Not known. What is the reported experience with the algorithm?

None.

Upstream and Downstream Requirements What kinds of compo-

nents or algorithms are typically executed prior to or subsequent to

this algorithm? Matching algorithms are typically upstream. Are

the representations chosen for the input and output data consistent

with the expected or typical upstream and downstream algorithms?

The expected upstream algorithm is one matching a sensed feature

to model feature and, since the Tan algorithm requires input line

matches for edges on a planar polygonal object, the matching algo-

rithm must produce line matches as well. However, if only point or

line segment matches are available from the matching algorithm,

line parameters can easily be generated from them. Does anything

in the algorithm constrain the upstream or downstream algorithms

that must be used? Line matches (or matches from which line
matches can be easily derived) must be presented to the algorithm.

Surface or curve matches are not acceptable.

Parallelizability Can the algorithm be parallelized? Some minor as-

pects of the algorithm can be parallelized. Has it been? No. How

does parallelizing a�ect performance? Very little.

Modularizability Can subcomponents of the algorithm be modular-

ized? Yes. Have they been? Yes. How does modularization a�ect

performance? Slows.
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Nature of interaction How does the component or algorithm interact

with other algorithms and systems? In MathematicaTM , it is a sim-

ple function call. In order for Mathematica to exchange data with

other software and systems, Mathematica's MathLinkTM commu-

nications protocol must be used.

Coding style How is the code written, e.g., in functional, procedural,

recursive, or object-oriented style? Mathematica code is functional,

procedural, and interpreted.

Compliance to Standards Which (if any) interface or data standards

(published or de facto) are used and complied with? None.

3.3. Step 3: Formal Language Instantiation of the

Specification

In order to study unambiguous, semantically-rich representations of

components, a goal of this research was to use a formal information

modeling language to record information about particular components

in the speci�cation categories. However, the goal of the research was not

to �nd the best formal language for the representation of components.
We have chosen the EXPRESS language to conduct a feasibility study

on formally representing the components. EXPRESS was developed

as an information modeling language and is part of the ISO standard

10303, also known as Standard for the Exchange of Product Model

Data (STEP) (ISO, 1994a). The authors examined formal languages,

such as Z (Diller, 1997), for modeling components. Although Z and

other similar languages provide su�cient richness for expressing the

component speci�cations, they do not provide some easily-used capa-

bilities of EXPRESS. Team members were also already familiar with

EXPRESS.

The EXPRESS language proved to be adequate for representing the

generic and instantiated component speci�cations. Using the generic

model of the component family in EXPRESS, particular components

may be de�ned in STEP Part 21 exchange �les (ISO, 1994b). Part
21 �les can be used in conjunction with available tools to read them

into computer programs or to generate them automatically. STEP

Part 21 �les are di�cult to read by humans unfamiliar with their

syntax. We developed a computer-aided software engineering tool to

aid in the de�nition of the part pose estimation speci�cations. The

tool, named FFProbe, was built using a NIST-developed Data Probe

(Morris, 1993) system, which allows users to build an interactive graph-

ical system for dealing with instances of data that correspond to a
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particular EXPRESS schema. Using FFProbe, users can create or edit

instances of component speci�cations in a readable format, save col-

lections of instances in a STEP Part 21 �le, read in collections of

instances from STEP Part 21 �les, and examine the models in a read-

able way on a computer screen. The name FFProbe refers to \func-

tionality frames," which is another term used to describe component

speci�cation instantiations.

Figure 2 shows a window displayed by the FFProbe for editing a
functionality frame. The window has been �lled in with data for a �cti-

tious part pose estimator, in order to present a more compact example.

The EXPRESS model for the generic speci�cations described in section

3.1 was 15 pages long. The names of the attributes are shown on the left,

the data types on the right, and the data values in the middle. Most of

the data values are references (such as #2) to other data instances. The

names and data types of the attributes are taken from the EXPRESS

schema for the speci�cation. Figure 3 shows a FFProbe window for

editing a functionality frame set, also �lled in with �ctitious data. All

the referenced data instances of Figure 2 and Figure 3 are shown in

Figure 4, which is the data section of the STEP Part 21 �le written by

the FFProbe after all the required data needed to complete the example

was entered. In Figure 4, data types which are strings appear between

single quotes, data types that are lists appear inside parentheses, and
data types that are EXPRESS entity instances appear as references of

the form #n. The functionality frame shown in Figure 2 is item #1 in

Figure 4. The functionality frame set shown in Figure 3 is item #23 in

Figure 4.

Once functionality frame data has been put into STEP Part 21 �les,

readily available software tools automatically generate C++ code for

accessing the data. These access functions could be used in a computer

program for searching a database of software component speci�cations.

Database systems already exist that enable some forms of searching

automatically, given an EXPRESS schema and data conforming to the

schema.

4. Future Work

We are performing further validation of the component speci�cations

for part pose estimation algorithms. Other researchers at NIST, who

are developing and testing new part pose estimation algorithms, will

use our component speci�cation framework. This will verify the ap-

proach and categories we have selected and will expand the library

of available part pose components for which we have speci�cations.
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Figure 2. FFProbe Functionality Frame Window

Figure 3. FFProbe Functionality Frame Set Window

Since our approach relies on framework-dependent speci�cations, we

are investigating formal speci�cation languages that go beyond a single

component. We are starting to experiment with Rapide, an Architec-

tural Description Language developed at Stanford University (Luckham

et al., 1995). Architectural Description Languages rigorously describe

the design of software systems and are intended to facilitate better

understanding of software architectures and facilitate reuse. Within this
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DATA;

#1=FUNCTIONALITY FRAME(#2, #3, (), #4, #7,(#9), #12,

(), (), (), (), #13, #15, #16, 'pose estimator', #18,

#19,(), #20, 'finds part pose', #21, #22, ());

#2=REFERENCEABLE VERBIAGE(('uses Monte Carlo', 'error tables

tabulated'));

#3=REFERENCEABLE VERBIAGE(('none'));

#4=COMPLEXITY MEASURE(#5, #6);

#5=REFERENCEABLE VERBIAGE(('order log N'));

#6=REFERENCEABLE VERBIAGE(('quite efficient'));

#7=CONVERGENCE STATEMENT(#8, .T.);

#8=REFERENCEABLE VERBIAGE(('fast convergence'));

#9=DATA STRUCTURE('points',#11, #10, .T.);

#10=REFERENCEABLE VERBIAGE(('double points[20];'));

#11=REFERENCEABLE VERBIAGE(('array of twenty doubles'));

#12=REFERENCEABLE VERBIAGE(('aborts on error'));

#13=INTERNALS STATEMENT((), #14,());

#14=REFERENCEABLE VERBIAGE(('internals not available'));

#15=REFERENCEABLE VERBIAGE(('no known bugs'));

#16=USE STATEMENT(#17, .CALL.);

#17=REFERENCEABLE VERBIAGE(('used by function call'));

#18=CALLS((), ());

#19=REFERENCEABLE VERBIAGE(('chokes on noFigure 1 - zooise'));

#20=REFERENCEABLE VERBIAGE(('must be sequential'));

#21=REFERENCEABLE VERBIAGE(('very robust'));

#22=REFERENCEABLE VERBIAGE(('20 seconds on SPARC for 300 points'));

#23=FUNCTIONALITY FRAME SET(#24, (#25, #26), (.SUN SOLARIS.), (), #28,

(.SUN SOLARIS.), (#1), 'part pose set', #27, .ANSI C., .T., #29);

#24=INFORMATION STATEMENT((),(#25, #26), ());

#25=PERSON('Jones', 'Pete', 'USA', '800-123-4567', 'pete@uw.edu',

'', '');

#26=PERSON('Nimble', 'Jack', 'USA', '800-123-4568', 'jack@uw.edu',

'', '');

#27=REFERENCEABLE VERBIAGE(('find part pose'));

#28=REFERENCEABLE VERBIAGE(('camera pixels'));

#29=REFERENCEABLE VERBIAGE(('written in ANSI C'));

ENDSEC;

Figure 4. Data Section of File Written by FFProbe

context, we are going to formally describe the RCS architecture and

specify its constituent nodes in a generic fashion. Speci�c instantiations

of the nodes or their internal modules (BG, WM, SP, VJ) will be created
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for particular example applications. We will study the categorization of

component and algorithm families that are relevant to robotics and in-

telligent systems. The resulting, formally-de�ned framework will allow

researchers to experiment with the sharing and reusability of intelligent

control components.

5. Conclusions

We have examined the feasibility of expressing a software component's

speci�cations in three stages: the generic speci�cation categories for the

family of components, the natural language instantiations for particular

components within that family, and the formal language instantiations

for the components. Our results indicate that this is a viable approach

to facilitate the communication the relevant facets of a component

to potential users. Given agreed-upon, common templates for speci�c

component categories, this approach can be adopted by the robotics

research community for exchanging algorithms and software. Having

a common set of domain-speci�c functional categories, it is possible

to generate major component families that can be shared. It is not

essential that the research community adopt formal representations

for their components. Since researchers in the same �eld tend to have
a common vocabulary and terminology already, the natural language

versions should be an adequate and necessary �rst step for publication

and retrieval of components. As the speci�cation categories are exer-

cised and re�ned through use, formalization may become appropriate to

consider. At that time, it will be possible to consider tools that relieve

users of the burden of viewing the formal speci�cations. Internet-based

component search, matching, retrieval, simulation, and composition

will eventually be possible. The initial step { agreeing upon component

families and speci�cation categories for robotics { has to be taken �rst.

DISCLAIMER

Certain commercial products or company names are identi�ed in this
paper to describe our study adequately. Such identi�cation is not in-

tended to imply recommendation or endorsement by the National In-

stitute of Standards and Technology, nor is it intended to imply that

the products or names identi�ed are necessarily the best available for

the purpose.
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